
Software Development 15-1

Chapter 15: Software Development

The various experiments and projects at Fermilab have their own environments
for code management and development, in most cases. Check with the
software managers in your experiment or group to find out what tools you’re
expected to use, what standards you’re supposed to follow, and so on.

This chapter gives an introduction to UNIX software development tools in
common use at Fermilab, providing information on:

• Supported languages

• Compiling and linking in C, C++ and FORTRAN

• Debugging

We do not include a discussion of general programming here, but rather,
aspects of software development particular to UNIX. You will need to
reference the man pages and the vendors’ manuals for more system-specific
details.

Useful documents relating to FORTRAN, C, and C++ programming can be
found under Software Development on the UNIX Resources Web page.

Many software development subjects of interest to Fermilab users are beyond
the scope of this manual. Among them are:

• Object Oriented programming techniques including NextStep

• CASE tools

• Neural Network methods

• Lattice Gauge techniques used in ACP-MAPS, CANOPY, et.al.

• Data Mining methods available in the CAP facility.

This chapter was initially written in 1996. We checked the contents (2003)
to make sure they are still valid, and have updated the existing information
as necessary, in particular, including Linux specifics. However, we have not
added information such that the chapter reflects the state of software
development in 2003. We are keeping this chapter in UNIX at Fermilab
because it is valid if not current, and it may be helpful to some users.

15-2 Software Development

• Many excellent commercial tools for building Graphics User Interfaces,
debugging, migrating and analyzing performance of user code, building
Database interfaces, etc.

15.1 Overview of Programming Languages
and Tools

This is a short overview of some common programming languages. Our aim
here is to give you a general idea of what tools are available, and how they can
be used. The list is ordered from low to high level, and indicates common
uses:

Assembler not used at Fermilab

C system services, user interface, general utilities

FORTRAN FORmula TRANslation (physics calculations)

C++ object oriented general programming

Perl interpreter, general purpose

Python object-oriented and/or general purpose interpreted
scripting language

Tk interpreter, GUI interfaces

Assembler

Traditionally, assembler has been needed for a couple of reasons:

• Access to system services and hardware

• Tuning program efficiency

Assembler programming is not generally necessary or desirable on the RISC
based UNIX systems presently in use. RISC system performance is so heavily
dependent on pipelining and various caches that it is extremely difficult, if not
impossible, for an individual to write more efficient assembler code than is
generated by the higher level language compilers. The C language provides all
the hardware access and system service capabilities traditionally provided by
Assembler.

C

As noted above, C has filled the programming niche traditionally occupied by
Assembly language. In addition to its normal use as a high-level programming
language, C can act as a universally portable Assembler.

Software Development 15-3

Because the C language was created, has evolved, and has become
standardized hand-in-hand with the UNIX operating system, it is the language
of choice for applications involving system services and user interfaces. Using
C is discussed in several of the following sections.

Now that an ANSI C standard exists and is widely implemented, portability of
C code is much improved. ANSI C compilers are the default on most Fermilab
systems. Likewise, adoption and availability of POSIX standards for operating
system services has greatly improved program portability.

An excellent reference book for C programming is The C Programming
Language by Kernighan and Ritchie published by Prentice-Hall.

FORTRAN

FORTRAN remains the most effective language for mathematical calculations.
This is due partly to decades of research which has produced highly efficient
optimizing compilers, and partly to the millions of lines of tested, portable
code already in use.

C++

C++ adds object oriented programming constructs to the C language. At the
risk of oversimplifying, it seems that C++ is substantially harder to learn and to
use for writing new programs, but the resulting programs are much better
structured, more maintainable, and more shareable than traditional C or
FORTRAN programs.

An additional advantage of C++ is the availability of class1 libraries. A
Standard Template Library will come with most compilers soon. This library
will contain many useful low level classes for such things as strings and
streams I/O. Also, some vendors include other commercial class libraries as
added value to their compilers. In addition to the vendor-supplied versions,
C++ is available as a part of Gnu C. This has increased its popularity.

The C++ language standard is (still!) in the process of adoption by the ANSI
and ISO standards committees. Since the C++ standard has not been finalized
(although it changed significantly in December 1996), there are at this time
(November 1997) cross-platform porting issues. None of our major vendors
(SGI, IBM, GNU) are yet providing a draft-standard-compliant compiling and
runtime toolkit. The safest bet for generating portable C++ code is to avoid
using newer features such as exceptions and templates, which may be
implemented differently (or not at all) by the various C++ compiler vendors, at
least until the vendors catch up with the standard. As an alternative, use the
g++ command to run the Gnu integrated C/C++ compiler on all platforms.
Using the g++ command instead of gcc gives you appropriate C++
linking.

1. A class is similar to a structure definition in C.

15-4 Software Development

For documentation, you may refer to:

• the CC (upper case), gcc and g++ command man pages

• The C++ Programming Language, Addison-Wesley, by Bjarne
Stroustrup

Perl

perl is installed at Fermilab as part of the shells product. The man page for
perl gives a good brief description:

perl is an interpreted language optimized for scanning arbitrary text files,
extracting information from those text files, and printing reports based on
that information. It’s also a good language for many system management
tasks. The language is intended to be practical (easy to use, efficient,
complete) rather than beautiful (tiny, elegant, minimal).

There is an excellent text published by O’Reilly & Associates, Inc. on perl.

Python

Python is an interpreted, interactive, object-oriented programming language
often compared to Tcl, Perl, Scheme and Java. Python combines remarkable
power with very clear syntax. It has modules, classes, exceptions, very high
level dynamic data types, and dynamic typing. There are interfaces to many
system calls and libraries, as well as to various windowing systems (e.g., X11,
Motif, Tk, Mac, MFC, STDWIN). New built-in modules are easily written in
C or C++. Python is also usable as an extension language for applications that
require a programmable interface.

An on-line document for Python is available in the CD documentation
database.

Tk

Tk is an X11 toolkit that provides the Motif look and feel, and is easy to use
for building graphical interfaces largely because it is built on an interpreted
language. It can be used with a variety of languages including Tcl (Tk used to
be solely implemented using Tcl), Perl, and Python.

The best reference for Tk is the book Tcl and the Tk Toolkit1, by John K.
Ousterhout, published by Addison-Wesley. The README file under the tk
directory in $TK_DIR (created during setup) points to a draft of this book.
Also see the man pages for information on these languages.

1. Some publishers’ catalogues use an ampersand (&) rather than the word “and”; check
both in database searches.

Software Development 15-5

Other Languages and Language-Related Tools

Other tools exist that are commonly used as languages in the appropriate
context. These include, for example, the various UNIX shells (as discussed in
section 5.4 Shell Scripts), and awk, sed, yacc, and lex, for which O’Reilly &
Associates, Inc. provides excellent texts.

There are many other languages which are not widely supported, are supported
on a per-project basis, or are not in general use at Fermilab. Among these are
Java, Pascal, Modula-2, Lisp, Forth, and Bliss. We do not discuss them in this
document.

15.2 Introduction to C and FORTRAN on
UNIX

15.2.1 The C Compiler: cc

cc (lower case) is the vendor-supplied C compiler command on all
Fermilab-supported UNIX systems (except LINUX, where it is gcc). ANSI
C compilers are the default on most Fermilab systems. To compile one or
more C source files (<filename>.c), you run the cc utility. cc
automatically invokes the link editor ld unless the option -c, which explicitly
suppresses linking, is used.

15.2.2 The FORTRAN Compiler: f77

All the Fermilab supported UNIX systems have good FORTRAN 77
compilers, which provide some minimal extensions. These compilers also
recognize most DEC-supported VAX-FORTRAN extensions.

f77 is the FORTRAN compiler command on all Fermilab-supported UNIX
systems (on LINUX, f77 actually runs g77). The f77 command controls
both compilation and linking functions automatically using appropriate
FORTRAN runtime libraries. f77 can produce object modules, partially linked
objects, or executable programs, as appropriate. The option -c explicitly
suppresses linking.

15-6 Software Development

15.2.3 C and FORTRAN Compiling Basics

UNIX compilers, including f77 and cc, generally use both filename extensions
and the file content to determine how to handle the files listed on the command
line. The commonly used extensions are:

For C

c C source, e.g., myfile.c

For FORTRAN

f FORTRAN source, e.g., myfile.f

For both

o object file, e.g., myfile.o

a archive library, e.g., mylib.a

(none) executable image, e.g., myfile

For historical reasons the UNIX linkers produce by default an executable
named a.out; the option -o <filename> is available to override this
default.

We list here some basic compiling and linking examples. In these examples,
we use a source file named foo.c, where c is the standard extension for C.
In all instances shown here c can be directly replaced by f, and cc by
f77, for FORTRAN.

To produce the foo.o object module, enter the command:

% cc -c foo.c

To produce the foo executable from source, enter the command:

% cc -o foo foo.c

To produce the foo executable from source + object file, enter the command:

% cc -o foo foo.c myobj.o

To produce the foo executable from source + library, enter the command:

% cc -o foo foo.c $CERN_DIR/lib/libmathlib.a

To produce the foo executable from source + X11/Motif (standard system
libraries), enter the command:

% cc -o foo foo.c -lXm -lXt -lX11

The options used with the cc and f77 commands are discussed in later
sections.

Software Development 15-7

15.2.4 Linking Order

Most UNIX linkers process source, object and library files in the order that
they occur on the command line. Backward library references, from a file to
an earlier library, will not be satisfied. It may be necessary to list a library
more than once for successful linking.

15.2.5 Displaying Active Options

You may wish to know which options are active for a given compilation, in
order to verify that the defaults are what you expect. Each platform seems to
provide this information somewhat differently:

15.2.6 Option Passing

At each stage of compilation, any unrecognized command line options are
passed on to the next stage. Options that could be valid for more than one
stage can be explicitly passed to a particular stage. To direct an option to a
specific phase of compilation or linking, use the option -W (for IRIX) or
-Qoption (for SunOS). The phase is identified by the letter immediately
following the -W. Thus, for example, -Wl,-m tells f77 or cc to pass the
option string -m to the l (link) phase. The f77 command line might read:

% f77 -Wl,-m foo.f for IRIX, and

% f77 -Qoption ld -m foo.f

for SunOS (where ld is the loader program)

15.3 Introduction to C++ on UNIX

The bigger experiments have a large infrastructure around their C++ code
development. Users should refer to their experiment-specific websites for
development information, tutorials, and so on.

Platform Option Result

Linux -v Options and other details, to stdout

IRIX -v Options and other details, to stdout

SunOS -’#’ Options and other details, to stdout

15-8 Software Development

CC (upper case), g++ and gcc are all C++ compiler commands on the
Fermilab-supported UNIX systems that provide C++ (see section 15.1
Overview of Programming Languages and Tools for a brief discussion). Just
as C++ is a superset of C, the C++ compilers are very similar to C compilers in
that their options are usually a superset of C compiler options. The basic
compiling information about C in section 15.2.3 C and FORTRAN Compiling
Basics is also applicable to C++, with the following exceptions1:

• Source filename extension conventions are compiler-dependent. Check
the man pages for CC (upper case) to determine the extensions used on
your system. Extensions include:

C (upper case)

c (lower case)

cxx

cpp

cc

c++

hh c++ header file

chh c++ header file

icc c++ included source file (usually inline function
definitions).

• The C++ compiler is invoked with CC (upper-case), g++ or gcc

• There are additional compiler options specific to C++; see the man pages.

The C++ compiler may not yet be installed on your Fermilab UNIX system.

15.4 C, C++ and FORTRAN Compiler
Options

The default compiler options will produce a usable program on any of the
supported platforms, however they may not be optimal for many situations.
Several additional options are discussed in this section.

A caveat: One very annoying “feature” of the f77 and cc commands is that
some of the options must be specified with whitespace (at least one blank
character) between the option identifier and the option value, others without
whitespace and still others with or without, according to the user’s choice. For

1. This doesn’t apply to Gnu C++. The compiler command for both Gnu C and Gnu C++
is gcc, and the available Gnu compiler options are different from the vendor compiler
options.

Software Development 15-9

instance, on IRIX systems, there must be whitespace between -o and the
name of the executable file but there must not be any whitespace between -l
and the library file name.

If compilers are upgraded it is possible that some of these options could
change. For full details on all the options, see the man pages and the vendor
compiler documentation.

15.4.1 Commonly-Used Options

These options are valid for C, C++ and Fortran:

-c suppress linking, produce object file *.o. The linker is
called as part of the compilation process by default.

-L <directory> add <directory> to the default linker search list;
not needed for user libraries. The -L option adds
directories to the linker’s default search path. -L
directories are searched ahead of system library areas.
A user library could accidentally match the name of an
obscure system library, with startling results.

-l<file> search library lib<file>.a, from the default areas
(the lib gets prefixed and the .a appended
automatically)

With user-written libraries, specify the libraries on the command line with their
true file names and a full path, without using the -L and -l options.

-o <file> (lower case o) produce executable program <file>
rather than a.out

-O<n> (upper case O) optimize at level <n> where <n> is
0, 1, 2, 3, or 4. The meanings of the different
optimization levels vary from system to system. See the
man pages for details.

-w suppress informational and non-fatal compiler warnings

-P (upper case P) run cpp (C preprocessor) only to
produce *.i source listing

-p (lower case p) enable profiling (used with the prof
profiler); see the man pages for details

-gp enable profiling (used with the gprof profiler); see the
man pages for details

Other commonly-used C and C++ compiler options are:

-I <directory_name>extend include path

-D set value of preprocessor macro

15-10 Software Development

Other commonly-used FORTRAN compiler options are:

-u IMPLICIT NONE

-C (upper case C) check runtime subscript range

15.4.2 Recommended Options for General Use

As mentioned earlier, the default options may not be optimal for a number of
very common situations, namely for debugging, moving binary code between
non-identical machines, or tuning for best performance. Even for general
usage, some non-default options have proven helpful in avoiding internal
compiler limits and providing better compatibility for migrated code.

This list shows options by platform which apply to all situations, and which we
recommend for general use. They can be used in addition to other options you
might choose based on your specific needs. As stated above, if compilers are
upgraded it is possible that some of these options could change, so you should
always consult the man pages.

IRIX -trapuv -lfpe

SunOS -xl -fnonstd

Linux

Discussion of General Options

-trapuv (IRIX) set uninitialized variables to NaN, to help catch
nonportable code and latent bugs at runtime.

-lfpe (IRIX) use the Floating Point Exception library, to
report or core dump on errors. Without -lfpe, errors
produce NaN values silently. Must be combined with
the TRAP_FPE environment variable, or calls to
handle_fpes, to be effective. TRAP_FPE must be set
to the value:

OVERFL=ABORT;DIVZERO=ABORT;INVALID=AB
ORT

See section 9.5 Shell Variables and Environment
Variables for setting environment variables.

-xl (SunOS) Extended Language, for Fermilab-required
extensions (see section 15.2.2)

-fnonstd (SunOS) trap floating point errors.

Software Development 15-11

15.4.3 Debugging Option

-g include full symbol table for debugger. This option
interacts with the optimizer differently on each
platform, so we provide some usage notes:

IRIX -g forces optimization off; use -g3 to permit
optimization

SunOS you should use -O1 (upper case letter o, and
number 1) with -g

15.4.4 ABI Options Under IRIX 6

Under IRIX 6, there are three Application Binary Interface (ABI) options
available. The selected option specifies at compile time which subset of the
processor chip’s capabilities is to be used. In previous releases of IRIX, and in
all releases of the other supported UNIX flavors (as of this writing), the user is
not given a choice of ABI. Under IRIX 6, choosing an ABI is generally
necessary if you’re doing mixed-language programming or using any libraries
other than those supplied by the vendor. The available ABIs and their
associated command line options are:

O32 (-32) conforms to the ABI used with all prior IRIX releases

N64 (-64) puts the processor into full 64-bit mode

N32 (-n32) leaves the processor in 32-bit mode but takes advantage
of a number of newer features and generally produces
more efficient code on the newer processors

This topic is discussed in the Web page IRIX 6 Application Binary Interfaces,
available from the CD home page; follow the Computational Physics link and
look under Cern Library at Fermilab.

15.4.5 Speed Optimization Options

Note that on most platforms a combination of options is required for best
optimization. Recall that these options may be used in addition to general
recommended and other options. The -O’s here are all upper case letter o’s.

IRIX -O3 -mips2

SunOS -O3 -cg92 -libmil

15-12 Software Development

Discussion of Speed Optimization Options

15.4.6 Load Map Option

The load map option is actually a linker option. On IRIX this requires passing
to the link phase the option that controls production of a load map.

15.4.7 Special FORTRAN Compiler Options

Source Code Listing Option

Each platform has an option that produces a source code listing. The file
extensions for these listings are platform-dependent.

Platform Options Comment

IRI
X

-mips
2

Use full R4000 instruction set. This is important
on R4000 and later systems.

Sun
Os

-cg92

-libm
il

SuperSPARC V8 instruction set Sparcstation 2
and later. See the man fpversion document.

Hardware-specific inline math

Platform Option Output

IRIX -Wl,-m stdout (SysV style list of
input/output)

IRIX -Wl,-M stdout (BSD style
primitive map)

SunOS -m stdout

Platform Option Listing Extension

IRIX -listing L

SunOS -Xlist lst

Software Development 15-13

Saving Local Variables

The FORTRAN 77 standard allows subprogram local variables to become
undefined between calls, unless saved with a SAVE statement. Many UNIX
f77 compilers require the SAVE statements for retained local variables.
SAVE’d variables are usually called static, and unSAVE’d variables are called
automatic. For programs not yet properly equipped with SAVE statements, f77
command line options are available as follows:

C Preprocessor

The C preprocessor (cpp), a macro processor, is used in f77 for conditional
compilation, macro expansion and source inclusion. If you plan to run cpp,
remember to double any backslash characters (\\) in your code to prevent
their misinterpretation as cpp escapes. The option shown in parentheses is the
default option for the corresponding platform:

IRIX (-cpp) -nocpp

SunOS any input file name *.F is automatically preprocessed
by cpp

See the man pages for cpp syntax and usage information.

Extend Search Path for INCLUDE

Use the f77 command line option -I <path> to extend the search path for
the INCLUDE statement on IRIX (not supported on SunOS), where <path>
is the path to the directory where the include files are found.

Internal Compiler Limits

You may need to set one of these if you are compiling a very large single
source file.

IRIX -Olimit 1500

Allows somewhat larger routines to be optimized.

Platform Static Option Automatic Option

IRIX -static -automatic
(default)

SunOS (default) -stackvar

15-14 Software Development

15.5 FORTRAN Programming

There is some additional information about using FORTRAN in the UNIX
environment that you will find useful to know.

15.5.1 External Reference and Entry Point Names

In order to avoid conflicts with the C runtime library when FORTRAN and C
programs are included in a single program, most UNIX f77 compilers
internally append an underscore to FORTRAN external references and entry
point names. At Fermilab we have set up all f77 compilers to do this by
default.

15.5.2 Separate Compilation of FORTRAN Subpro-
grams: fsplit

By default, most f77 compilers pre-link all the source code being compiled,
even when you specify the -c option. If you compile a library with a single
f77 statement, it will usually contain a single module, and be linked as a
whole.

The fsplit utility identifies and extracts subprograms from the original
FORTRAN source file into individual files in the current directory. These files
can then be compiled separately so that they retain their identity when
assembled into a library.

The names of the extracted individual files are taken from their corresponding
subprogram names. On some systems fsplit will overwrite any pre-existing
file, including the original source file, whose name matches any of the
subprogram names.

See the man pages for more information on fsplit.

Linux users who want fsplit can find it at:
http://rpmfind.net/linux/falsehope/home/pierre/fspli
t/.

15.5.3 Loading Block Data Modules

Many UNIX f77 compilers enforce the standard restriction that variables in
COMMON must be initialized only in BLOCKDATA subprograms.

To ensure the loading of BLOCKDATA subprograms from libraries, declare
the BLOCKDATA program name as EXTERNAL in some important module
which you know will be loaded.

Software Development 15-15

15.5.4 Program Control

Command Line Arguments

A FORTRAN program can easily evaluate arguments included on the
command line that runs the program. A couple of examples follow.

• The IARGC function returns the number of command line arguments:

 N = IARGC () Sets N to the number of command line
arguments

• The GETARG subprogram returns the value of a specified argument:

 CALL GETARG(I , STR)Puts the I’th argument into string STR

Environment Variables

The GETENV subprogram provides the values of environment variables. For
example, to copy the value of variable MY_OUT into string OUTFILE,
include in your source file:

CALL GETENV ('MY_OUT' , OUTFILE)

Printing

The usual FORTRAN carriage control characters placed in the first column of
formatted output files are not interpreted by most UNIX text handling utilities.
Use the UNIX asa utility to convert such FORTRAN output files to an
equivalent standard ASCII text form. asa handles blanks, 0, 1 and + in column
1, removing any other characters. See the man pages for asa for details.

15.5.5 Future FORTRAN Enhancements

FORTRAN 90

The FORTRAN 90 standard includes FORTRAN 77 as a subset, and makes
standard many of the extensions in common use. FORTRAN 90 is not yet
commonly installed at Fermilab, and in fact we recommend that you avoid
using FORTRAN 90 extensions until it is widely available. This document is
written for f77 users.

15.6 Obsolete Programming Features

You may encounter these features in older code.

15-16 Software Development

Calling BLOCKDATA

Some systems (VS-FORTRAN) required an explicit call to each BLOCKDATA
routine if you wished to force loading of that routine from a library. This is not
necessary on any supported UNIX system.

BUFIO

The Fermilab bufio product for accessing raw variable length records on tape
and disk is no longer supported. Improved capabilities are being supported in
RBIO and DAFT.

RANLIB (SunOS/4)

The RANLIB utility added necessary library symbol tables under SunOS/4.
This is done automatically under SunOS 5.

ar -s Option (ULTRIX)

The ar -s option added necessary library symbol tables under Digital’s
ULTRIX1 and some earlier operating systems. This is done automatically
under all Fermilab supported systems.

15.7 C and FORTRAN I/O

This section mainly applies to FORTRAN. For C, all you need to know is that
the RBIO and DAFT libraries mentioned below are available.

Recall that file names in UNIX are case sensitive. It is customary to use
lower case for normal files, reserving upper case names like README for
documentation and control files.

Note that you cannot use the shell metacharacter tilde (~) to specify a home
directory within a C or FORTRAN program; ~ is valid only on a UNIX shell
command line (for all shells but sh). logdir can be used within programs
for this purpose (see section 7.1.2 The Home Directory).

1. ULTRIX has been superseded by Digital UNIX which is no longer supported at Fermi-
lab.

Software Development 15-17

15.7.1 Records

The UNIX operating system treats a disk file as a sequence of bytes.
Interpretation of data as records is entirely up to individual applications. The
FORTRAN I/O libraries provide the necessary record handling for FORTRAN
programs. READ statements return only the content of the records, and not the
control words mentioned below.

Formatted records are terminated by a new-line character <CTRL-L> (lower
case L), consistent with other UNIX text handling programs.

Unformatted records are both preceded and followed by a 32 bit integer
containing an exclusive byte count.

15.7.2 Tapes

Tapes of course have real physical records, and must be handled differently
than disk files. A tape file is sometimes called ‘character special’ to indicate
that it is not accessed on a character-by-character basis. Tape handling is
covered in Chapter 14: Data and Tape Handling.

15.7.3 Standard Input and Output

In conformance with the FORTRAN standard, READs and WRITEs to unit *
are directed to stdin and stdout. You can READ and WRITE to units
5, 6, and 0 without an OPEN. They are preconnected to stdin, stdout,
and stderr, respectively. If you OPEN and write to any other unit number
without specifying a file name, a default name of fort.# will be used.

15.8 Performance Tuning for C and FOR-
TRAN

15.8.1 Optimization

Using the compiler -O (upper case) options can improve program execution
speed by factors of 3 or more, depending on the application, over unoptimized
code. Note that your libraries must also be compiled at the same level in order
for this to be effective.

Beware that there are some optimizer bugs. You should always do a limited
run initially with and without optimizer options, and check your answers.

15-18 Software Development

For production running, use the appropriate hardware-specific optimizations
for the systems running the code. These options typically tune for cache sizes,
instruction sets, and other internal hardware features, resulting in sizeable
speed gains. On some systems this produces an executable that will run only
on the targeted architecture.

It is common practice to retain debugger symbol tables in production
programs, with only a small speed penalty. You may have to exercise care that
the -g option does not also disable optimization of such production
programs. Under IRIX, you must use -g3 to get both optimization and
symbol tables.

See the suggested speed optimization options, and vendor documents for
details.

Floating Point Errors

You can obtain substantial speed increases on some systems by disabling the
detection and trapping of floating point errors such as overflow, division by
zero, and invalid values.

On the systems with the biggest gains, this practice can produce apparently
normal, but incorrect, results. For example, 1000./0. can produce the result
1000. It is hardly necessary to point out that this sort of thing can produce
surprising physics results! For this reason our recommended options for
general use are set to at least detect and report floating point errors.

Qualifiers which force precise trapping of floating point errors are generally
only used when tracking down known problems, as they can impose a large
performance penalty.

15.8.2 Word Length

It may be tempting to use arrays of short words to ‘save memory’. On previous
generations of computers this could also speed execution. On RISC systems
there is a big performance penalty for this practice.

The current generation of RISC processors are optimized for 32 and 64 bit
operations. Operations on 8 bit or 16 bit words are performed several times
more slowly. The processor must extract the necessary data into a longer
word, perform the operation, and mask the result back into the original
location.

Alignment of variables is important for the same reason. A misaligned 32 bit
word requires even more shifting and masking than a 16 bit word, with an even
greater performance penalty. If you must combine different length variables in
a data structure such as a COMMON, place longer words earlier in the data
structure.

Software Development 15-19

15.8.3 Feedback

The speed of a program can be limited as much by memory access as by
processor speed. Effective use of memory cache is critical to getting good
performance.

Cache usage can depend on the details of the linking process. Arbitrary
changes in the ordering of modules in the executable can result in nearly 20%
differences in execution speed, for typical physics code. Small changes like
switching between static and shared libraries, or modifying a single subroutine
call in your code, can result in substantial changes in linking order and hence in
performance.

For this reason, some vendors provide mechanisms for setting optimized
module ordering in the executable, based on data from a trial run of the
application.

15.8.4 Inlining

Many compilers provide options for replacing calls to external modules with
equivalent inline code, to permit better optimization and reduce subroutine call
overheads.

Physics code does not generally benefit measurably from such inlining.
Inlining within a library makes the inlined modules nonreplaceable at link
time, leading to confusing results and difficult debugging. In our
recommended speed optimization options we stop short of the levels that
introduce inlining.

15.9 C and FORTRAN Mixed Programming

It is possible, with a little care, to combine C and FORTRAN modules in the
same program. Some of the issues that need attention include:

• variable types

• array indexing

• external names

• arguments

• commons

• I/O

• linking

For newly written C programs, you may wish to use the cfortran.h
header file available in the cern product.

15-20 Software Development

If you’re programming under IRIX 6, you will need to choose an ABI. Refer
to section 15.4.4 ABI Options Under IRIX 6.

We give here a summary of the techniques used on the Fermilab UNIX
systems.

15.9.1 Variable Types

Generally, these variable types are equivalent:

C strings are zero-terminated, and have no intrinsic length. FORTRAN
character variable lengths are given by an internal descriptor. FORTRAN
character variables passed to C routines should be copied and zero-terminated
before they are used.

The internal representation of FORTRAN LOGICAL variables is usually
non-0/0 for .TRUE./.FALSE. respectively, but it is best not to count on this.

15.9.2 Array Indexing

By default C starts indexes at 0 and FORTRAN starts them at 1. C and
FORTRAN multiple index ordering is reversed. FORTRAN substring
selection appears as the first C string index. See the following equivalence
table:

FORTRAN C

INTEGER*
1

char

INTEGER*
2

short

INTEGER*
4

int

REAL float

REAL*8 double

LOGICAL (unavailable
)

FORTRAN C

intv(j) intv[j-1]

Software Development 15-21

15.9.3 External Names

By default on Fermilab UNIX systems, the f77 compiler modifies FORTRAN
subprogram and other external names. It forces each name to lower case, and
appends an underscore. Thus FORTRAN label SUBPROG would become C
label subprog_.

15.9.4 Arguments

FORTRAN subprogram arguments are always passed as addresses (C
pointers). C programs can specify arguments as either pointers or values.
FORTRAN CHARACTER arguments are passed as pointers, followed by a set
of additional values (not pointers) at the end of the argument list, giving the
length of each CHARACTER argument.

C routines can always call FORTRAN routines, with due attention being given
to arguments. FORTRAN routines cannot call arbitrary C routines.

15.9.5 Commons

FORTRAN COMMON’s are accessible in C as extern structs, with the same
name mapping as is used for entry points.

intv(j,k) intv[k-1][
j-1]

char(j)(k:
k)

char[k-1][
j-1]

FORTRAN C

COMMON
/FOO/ I

extern struct { int i ;
} foo_ ;

K = I k = foo.i ;

FORTRAN C

15-22 Software Development

It is best to keep your FORTRAN COMMON variables aligned on natural
boundaries1, in order to avoid potential padding words which may be inserted
differently by various FORTRAN and C compilers. You get natural alignment
easily by putting longer variables before shorter variables in the COMMON.

15.9.6 I/O

Mixed C/FORTRAN I/O to the same file is not advisable. Mixed
C/FORTRAN I/O to stdout, where stdout is the terminal, will usually
work reasonably well, making debugging easier.

15.9.7 Linking

The easiest and safest way to link C/FORTRAN programs is to use the f77
command, which automatically includes both C and FORTRAN run time
libraries. If you insist on linking with the cc or ld commands, remember
to add the options:

-lF77 -lI77 -lm

15.10 Executing a Program

Once you create an executable, you run it the way you do a normal UNIX
command, that is by typing its name followed by appropriate options or
parameters.

You must be aware that if you have not included “dot” (.) in your path,
whenever your executable is in a directory not explicitly included in your path,
you will need to prefix the executable name with ./ to run it. This was also
mentioned in section 9.6 Some Important Variables under PATH.

1. Keep all <n>-byte variables’ addresses an exact multiple of <n>, for example 0, 4, 8,...
for a 4-byte quantity.

Software Development 15-23

15.11 Debugging

15.11.1 dbx

dbx is a utility for source-level debugging and execution of programs written
in C, C++, and FORTRAN. dbx allows you to trace the execution of a
specified object file. You can step through a program on a line-by-line basis
while you examine the state of the execution environment.

Programs compiled with the -g option of cc (and other compilers) produce
an object file. This object file contains symbol table information, including the
names of all source files that the compiler translated to create the object file.

dbx also allows you to examine core files via its where command. A core
file contains the core image produced when the object file was executed,
providing information about the state of the program and the system when the
failure occurred. A core file named core is produced by default.

dbx commands can be stored in a start-up .dbxinit file that resides in the
current directory or in your home directory. dbx executes these commands just
before reading the symbol table.

There are some UNIX tools which provide a more sophisticated interface to
dbx. See your local system documentation for information on GUI-based dbx
tools. The product ddd (originally an interface for gdb) works as a front end
for dbx in its more recent releases. It is currently available at Fermilab as part
of the gcc product, but we expect to release it as a separate product soon. See
the DDD User’s Guide on the Web, document number DS0230.

Running dbx

To invoke dbx, enter the following command:

% dbx [options] [<object_file> [<corefile>]]

where <object_file> is the name of the file you want to debug.

Once dbx is running, you should see the (dbx) prompt. At this point you
can start issuing dbx commands.

Commands

There are many dbx commands, all described in the man pages. Some of the
basic commands are run, where, print, stop, list, cont, and
quit:

15-24 Software Development

run [<arguments>] Begin executing the object file, passing optional
command-line <arguments>. The
arguments can include input or output
redirection to a named file.

where [<n>] List all active functions on the stack, or only the
top <n>.

print [<expressions>]Print the values of one or more
comma-separated <expressions>. To print
values of two-dimensional FORTRAN array
elements use the format: print
<array_name>[1,2]

stop <restriction> [if <cond>]Stop execution if specified
<restriction> is true. Restrictions include
(this is a partial list):

 at (source line) <n>

 if <cond>

 in (procedure or function) <func>

<cond> (condition) is a Boolean expression; if
it evaluates to true, then execution is stopped.

list [<n>1 [,<n>2]] or list <func>

List the source text between lines <n>1 and
<n>2, or on lines surrounding the first statement
of <func>. With no arguments, list the next
ten lines.

cont [at <n>] [sig <signal>]Continue execution from the point at
which it was stopped if no arguments. Resume
from source line <n> or, if a <signal> name
or number is specified, resume process as if it
had received the signal.

status [> <file>] Show active trace, stop, and when
commands

delete [<n>] Remove traces, stops, and whens corresponding
to each command number <n>, given by
status. If <n> is all remove all.

quit Exit dbx.

Software Development 15-25

Example

You may want to start by using dbx to set some break points within your code.
To step through your code at the very beginning, you need to stop in the MAIN
routine if you are debugging an object file created from FORTRAN source
code (stop in main if your source is in C language). For example, you would
type:

(dbx) stop in MAIN

Now you can issue the run command to start execution of your object file.
You will get the process id and the name of the object file being executed.

(dbx) run

At this point, you may use the list command for the first 10-line listing of
the source code:

(dbx) list

Use the stop command to set break-points at various lines or procedures
within the object-file:

(dbx) stop at 10

(dbx) stop in sub123

(dbx) stop in sub456 if i == 24

The execution will stop in the example above at line 10, or in subroutine
sub123, or in subroutine sub456 when i is equal to 24. To continue
execution at any point in your debugging, issue the cont command:

(dbx) cont

To restart your debugging session, issue the rerun command:

(dbx) rerun

To exit dbx, type quit:

(dbx) quit

Usage Note

A user reports that when using dbx <object_file> core he has found
it useful to turn on all but one of the IEEE arithmetic traps, in order to stop
execution when the arithmetic fault occurs (instead of continuing with some
default action and then reporting that the following IEEE arithmetic flags had
been set). He located a spurious division by zero in this manner. The f77
man page for Solaris describes the necessary flag value on the f77 command
line: -ftrap=%all,no%inexact. We have not researched this for the
other UNIX flavors.

15-26 Software Development

15.11.2 gdb

gdb, a GNU product, can do four general types of things to help you debug
your programs:

• Start your program, and indicate anything that might affect its behavior.

• Make your program stop on specified conditions.

• Examine what has happened when your program stops.

• Modify your program, allowing you to experiment with correcting one
bug and go on to find another.

You can use gdb to debug programs written in C or C++.

You can also debug programs written in FORTRAN, although gdb does not yet
support entering expressions, printing values, or similar features using
FORTRAN syntax. Furthermore, it may be necessary to refer to some
variables with a trailing underscore.

See the document Debugging with GDB, document number PU0172. On the
CD home page, follow the documentation link.

15.11.3 purify

purify is a commercial product that detects memory corruption and finds
memory leaks in your executable programs. purify is currently available on
FNALU for Solaris. The command to run it is purify.

See the man pages for information on its syntax, options and uses.

