
The UNIX File System 7-1

Chapter 7: The UNIX File System

The UNIX file system has a hierarchical or tree-like structure with the
directory called root (/) as its source. The system is essentially composed of
files and directories. In this chapter we describe techniques for manipulating
files and directories, and commands designed to provide information about
them.

7.1 Directory Structure

The UNIX system automatically puts you at a specific location in the file
system when you log in. This is called your login directory. Typically, this is
the same as your home directory. The name of your home directory is usually
the same as your login name. Within this directory you can create files and
additional directories (sometimes called subdirectories) in which to group the
files. You can move and delete your own files and directories and control
access to them.

The root of the file system is called root and is written as a slash (/). In other
words, to change to the root directory, type:

% cd /

There is only one directory tree on a system even if several devices are
mounted in that tree. (All devices are viewed as files.) The current directory
or working directory is the directory that you are currently working in, which is
also the directory that commands refer to by default. Files in your current
directory can, therefore, be specified by their filenames only.

7.1.1 Pathnames

Wherever you can use a filename, you can also use a pathname, which is how
you point to files that are not in your current directory. You can refer to files in
other directories using either a relative path name, that is a path specified
relative to your current directory, or with an absolute path name, that is a path
specified relative to the root of the file system.

7-2 The UNIX File System

Absolute path names are preceded with /, the root directory. If a pathname
does not begin with / it is assumed to be a relative path name. Relative path
names begin with a directory or filename, a . (pronounced “dot”) which
refers to the current directory, or .. (pronounced “dot dot”) which refers to
the directory immediately above the current directory. The character / also
separates components of the pathname, which are directory names, except for
the last one, which can be either a simple filename or a directory name.

In summary, every file has a pathname, and its absolute pathname is of the
form:

/rootdir/dir2/... /filename

The following is the form of a relative pathname of a file:

dir_n/dir_n+1/... /filename

An example of an absolute path name is:

/usr/smith/project1/afile

If my current directory is /usr/smith, then I can refer to the file afile
in subdirectory project1 with a relative pathname like this:

project1/afile

Or, if my current directory is /usr/smith/project1, I can refer to a file
named fileb in /usr/smith/project2 as:

../project2/fileb

Note that you cannot necessarily tell if fileb is an ordinary file or a
directory name. Many commands will accept a directory name, and if it is a
directory name, the command in which it is used may perform the action on all
files in the directory. This behavior can be dangerous!

7.1.2 The Home Directory

Your home directory is the top of your personal branch in the file system, and
is usually designated by your username, i.e. /<path>/<username>.

Tilde (~)

In most UNIX shells other than sh, the tilde (~) stands for the home directory.
Used alone, it specifies your home directory. Followed by a different user’s
login name, it expands into the pathname of the home directory of that user.
This is a convenient way to refer to a user’s directory, because it is independent
of where the system manager may place the directory on the disk.

The use of tilde (~) to refer to a home directory is limited. It isn’t available in
the Bourne shell, and isn’t available in FORTRAN.

The UNIX File System 7-3

Of the following three examples, the first refers to the file def from your
own home directory, the second to the home directory of user jones, and the
third refers to file data1 in the subdirectory project1 of jones’ home
directory.

~/def

~jones

~jones/project1/data1

To change to jones’ home directory you’d enter:

% cd ~jones

logdir

FullFUE provides the command logdir which returns the full path of the
specified user. logdir by itself returns the path of the invoking user. For
example:

% logdir <username>

is equivalent to:

% echo <~username>

To change directories you’d enter (note the use of backquotes to use the output
of the enclosed string):

% cd `logdir <username>`

In contrast to the tilde, logdir can be used within commands, scripts,
FORTRAN and C programs, and other programs in all shells.

$HOME

The environment variable HOME is automatically set to the absolute pathname
of your home directory. Environment variables are discussed in section 9.5
Shell Variables and Environment Variables and HOME is described in section
9.6 Some Important Variables. To see the value of HOME, enter:

% echo $HOME

From some other directory, you can change to your home directory or one of its
subdirectories using a command like the following:

% cd $HOME1

or

% cd $HOME/mysubdir

1. cd by itself is equivalent to cd $HOME.

7-4 The UNIX File System

7.1.3 Command Line Directory Shortcuts

. Current directory

.. Parent directory of the current directory (“up” one
directory)

~ Your home directory (all shells but sh)

$HOME Environment variable whose value is your home
directory

~<username> Home directory of another user (all shells but sh)

/ Root directory

7.1.4 Directories and Executables

It is appropriate at this point to mention the relationship between directories
and commands. A command is simply the name of an executable file, located
in some directory. To execute a command, the shell first needs to find the
executable file. The shell therefore needs to be given a set of directories to
search. This information is provided via the environment variable PATH which
is a list of search directories. You can display it with the command:

% echo $PATH

PATH is explained more thoroughly in section 9.6 Some Important Variables.
Standard UNIX commands are generally grouped in a few standard directories
(e.g., /usr/bin), and your default PATH contains these. See section 9.6
Some Important Variables to learn how to run executables that you create and
store in your own directories.

The utility which is useful in cases where a command may be ambiguous,
for example due to aliasing (see section 9.7 The Alias Command), and you
want to know exactly which executable file or files the command runs. which
lists the files that would be executed if the specified command(s) had been run.
The syntax for which is:

% which <command> [<command2> ...]

Each argument is expanded if it is aliased, and your path is searched for the
executable files associated with the commands. See the man page for more
information.

The UNIX File System 7-5

7.2 Files

An ordinary file contains ASCII characters or binary data and is considered by
the UNIX system to be merely a sequence of bytes. No structure is imposed on
the file and no meaning attached to its contents by the system; the meaning
depends on the program that reads the file.

A directory file contains an entry for each file in that directory. The directory
entry for a particular file contains the file name and inode number. The inode
number is a volume data structure used by the file system. It has an associated
entry in the inode table which contains other information about the file such as
the owner, file protection, modification date.

A hidden file is an ordinary file whose name begins with a period (called
“dot”). The reason they are called hidden is that the ls (list files) command
does not list them by default. Use the -a option with ls to see them.
Hidden files do not appear in filename expansion of *, either. Filename
expansion is discussed in section 7.2.2, below.

UNIX does not support file versions. If you edit a file and save it with the
same name, your earlier version is overwritten. Similarly, if you copy or
rename (move) a file to a filename that already exists, the original file is
overwritten.

7.2.1 Filenames

A full file specification has only two parts, the directory specification and the
file name. A filename is composed of from 1 to 14 characters in old UNIX
implementations and a much larger number in more recent versions (up to 255,
typically). Although you can use any character in a filename except /, UNIX
assigns special meaning to many characters (metacharacters), so they should
be avoided (see section 9.2 Special Characters (Metacharacters)). It is safe to
use the upper- and lowercase letters, numbers, dash (-), underscore (_), period
(.), and comma (,). As mentioned in the previous section, files beginning
with a dot (.) are hidden files. The “filenames” . and .. (single and
double dot) are reserved. The . refers to the current directory, and the ..
refers to the current directory’s parent directory. No two files in the same
directory can have the same name, but files in different directories can have the
same name.

Dashes are fairly common in UNIX filenames simply because it’s easier to
type my-file than my_file.

Filenames are case sensitive. This means MYFILE is different from
Myfile is different from myfile is different from myFile, etc.

7-6 The UNIX File System

You cannot distinguish a directory file from an ordinary file by its name,
although some people make their own convention by beginning directory
filenames with a capital letter, or ending them in .d.

Filename extensions are not required in UNIX. You can include a period and
an extension in a filename to help describe the contents of the file, but it will
not have special meaning to UNIX itself. However, programs can make use of
extensions, for example the FORTRAN compiler expects certain extensions.
Note, you can have more than one period in a filename, for example,
lex.yy.c.

7.2.2 Filename Expansion and Wildcard Characters

The UNIX shells have a number of special characters which can be used on the
command line when specifying filenames and directory names. They allow the
shell to expand the argument into a set of filenames. These characters are
called wildcards. Filename references that contain these characters are called
ambiguous file references. Filename expansion is also called globbing.

The question mark (?) causes the shell to generate filenames which match any
single character in that position. For example, out? matches out1 but not
out12.

The asterisk (*) causes the shell to generate filenames which match any
number of characters (including zero characters) in that position. For example,
myfile matches myf*. The * alone means all files (except those that begin
with dot (.), which is a special case).

A pair of brackets ([]) surrounding a list of characters causes the shell to
match filenames containing the individual characters in that position. The
brackets define a character class and each definition can only replace a single
character in a filename. In other words, it is like a question mark that will only
allow certain characters. For example, memo1 and memoa match
memo[14a]), but memo3 and memo1a do not. A hyphen can be used to
define a range of characters, for example [a-z] represents all lowercase
characters. Thus memo[a-z] matches memoa but not memo2 or memoB.

Examples:

Character Action

 ? matches any single character in a filename

* matches any string of characters (including the
empty string) in a filename

[] matches any single character from the set
enclosed in the brackets

The UNIX File System 7-7

% ls out* lists all files beginning with out

% ls out? lists all files with 4-character names beginning with
out

% ls out[ab]* lists all files beginning with out followed by a or b
(e.g., outa4)

% ls *out* lists all files containing out

Filename expansion may surprise you with the results. For example, ls b*
would list all files starting with b in the current directory, but it would also list
the contents of all directories whose names start with b because of the way
ls behaves for a directory argument. If you want to be sure of what filename
expansion will result in, you can use the echo command to check it before
executing a command.1 For example, say you have a few matching files in
your directory for the command:

% echo *out*

You would obtain output something like this:

fout fout275 inandout out1 out2 out

Filename expansion in csh can be turned off by setting the noglob variable:

% set noglob

To turn it back on, type unset noglob.

7.3 Manipulating Files

This section describes the basic file manipulation commands:

• listing the contents of a directory

• displaying the contents of a file

• copying and renaming a file

• deleting a file

• changing a file’s access permissions

Section 7.5 Manipulating Directories describes the commands you can use to
change and manipulate directories.

1. echo is otherwise useful for sending messages to the terminal from a script and send-
ing known data into a pipe.

7-8 The UNIX File System

7.3.1 List Directory Contents: ls

The ls command, which stands for list, is used to list the contents of a
directory. ls has many options, some of which are system-dependent, so
only a few of them are described here. For a complete description of the
command, refer to the man pages for ls.

ls by itself lists the names of the files and subdirectories in the current
directory (in multicolumn format on some platforms), sorted alphabetically.

The format is:

% ls [<options>] [<filenames>]

where some of the options are:

-a List all entries, including those that begin with . (dot).

-l List in the long format, giving mode, number of links,
owner, group, size in bytes, and (by default) time of last
modification, by default sorted by filename.

-C List in columns (default on some platforms)

-F Put a / after the name of each file that is a directory, an *
after the name of each file that is executable, and an @
after the name of each file that is a symbolic link.

-R Recursively list subdirectories encountered.

-t Sort by time stamp (latest first) instead of by name. The
default time stamp is the last modification time (see
-u).

-u Use the time of last access for sorting if used with the
-t option or printed in the date column if used with the
-l option. -ult both sorts by and displays last
access date.

-d If the argument is a directory, list the directory itself, not
its contents. Use with -l to get the status (e.g.,
permissions) of a directory.

If the argument is a directory, ls displays the contents of the directory. Note
that this can happen unintentionally as a result of filename expansion. This
behavior can be prevented with the -d option. The -t option is useful
when looking at recent files:

% ls -lt

will result in the long output sorted by reverse modification date rather than by
filename.

The UNIX File System 7-9

The following is a sample output of ls -l.

The first line indicates the number of blocks used. The rest of the lines report
on (sub)directories or files in the directory being reported on. The first column
of the output is called the mode. The character in this first column indicates the
type of file, and for our purposes here, they are:

d directory

- ordinary file

The next 9 characters are interpreted as three fields of three characters each,
indicating the read (r), write (w), and execute (x) permissions for owner
(sometimes called user), group, and other, in that order (see section 7.6.1 File
Access Permissions for a discussion of permissions).

Next is the number of links to the file or directory. This refers to the number of
different names established for it. Normally files have 1, and directories have
1 each for the directory itself, its parent directory, and each of its
subdirectories. In the sample output above, notice that the directory Tools
has 3 and bin has 2. Evidently, Tools has one subdirectory and bin
has none.

The next fields are the login name of the owner, the group to which the owner
belongs, the size of the file in bytes, the date and time the file was last
modified, and, finally, the filename (which can be a directory name).

7.3.2 List File Contents: cat, less, more, head, and tail

UNIX has a number of commands that can be used for displaying the contents
of a file at the terminal.

total 251

drwxr-xr-x 3 nicholls g020c 512 May 2 08:53
Tools

drwxr-xr-x 2 nicholls g020c 512 May 2 09:01
bin

-rw-r--r-- 1 nicholls g020c 446 May 4 14:09
defaults

-rw-r--r-- 1 nicholls g020c 95418 May 1 17:42
intro.lpr

-rw-r--r-- 1 nicholls g020c 0 May 10 17:51
lsout

-rw-r--r-- 1 nicholls g020c 6683 May 1 16:46
man.lpr

-rw-r--r-- 1 nicholls g020c 12258 May 9 16:16
out

7-10 The UNIX File System

cat

cat, which stands for “concatenate and print,” is the standard UNIX file
display; it simply prints the file to the screen.1 When piped to less (see
section 6.4.4 Filters which describes less as a filter), cat displays the file
contents a screen at a time, and some simple commands may be executed at the
supplied prompt.

% cat <filename>... [| less]

As its name suggests, cat is in fact quite useful for copying and concatenating
files. Output can be piped to a file rather than to the screen, using standard
output redirection (see section 6.4.2 Standard Input and Output Redirection).
The following example concatenates the three specified files and copies them
sequentially to a single file called allthreefiles:

% cat fileone filetwo filethree > allthreefiles

less, more

A shortcut for cat <filename> |less is to use less as a file
browser:

% less <filename>

And wherever you use less, you can alternatively use more, although it is
not as functional as less. You cannot move backwards through the file with
more.

head, tail

head displays the first <n> lines of the specified file or files. If more than
one file is specified, the filename is displayed before each set of file contents of
<n> lines. <n> defaults to 10 lines.

% head [-<n>] [<filename>...]

tail displays the last lines of a file. Its syntax is a bit different:

% tail [+|-<n> lbc] [<filename>...]

The option +<n> displays the file starting <n> lines down from the
beginning of the file, -<n> displays the last <n> lines. l, b, or c
requests display of <n> lines, blocks, or characters (default is l lines). If
more than one file is specified, the filename is displayed before each set of file
contents. <n> defaults to 10 lines.

tail is useful when you want to see how far a process got. To display the
last line of a log file, enter:

1. There are better ways to display a file (see less and more, which follow cat in this sec-
tion).

The UNIX File System 7-11

% tail -1 <logfile>

7.3.3 Copy a File: cp

The command cp (stands for copy) can be used to make a copy of a file,
leaving the original version intact. You can copy a single file to another one
(in the same or a different directory), or you can copy one or more files to a
different directory, retaining the same filenames.

The syntax for these two situations varies slightly:

% cp [<options>] file1 targetfile

 the file <file1> is copied to <targetfile>, where
<targetfile> may include a path

% cp [<options>] <file1> [<file2> ...] <targetdirectory>

one or more files (<file1> <file2> ...) are copied to
<targetdirectory>

If the target is a file, its contents are overwritten unless -i is specified, in
which case you are prompted for confirmation.

Some options are:

-i If the target filename exists, you are prompted for
confirmation before overwriting.

-r Used only with the <targetdirectory> form.
Recursively copy a directory, its files, and its
subdirectories to <targetdirectory>.

The first example below copies myfile to anotherfile, both in my
current directory, prompting for verification in case anotherfile already
exists.:

% cp -i myfile anotherfile

New users may find it useful to define cpi as the alias for cp -i to use in
place of cp so that prompting always occurs. Section 9.7 The Alias
Command discusses aliases.

The second example copies files proj1 and proj2 to another directory
named newproj which is parallel to the current directory (has same parent
directory as current):

% cp proj1 proj2 ../newproj

The third example copies the file oldproj/proj1 to my current directory
(.), which is a parallel directory to oldproj (has same parent directory).
The file proj1 keeps its name.

% cp ../oldproj/proj1 .

7-12 The UNIX File System

7.3.4 Move or Rename a File: mv

The mv command (stands for move) allows you to rename a file in the same
directory or move a file from one directory to another. If you move a file to a
different directory, the file can be renamed or it can retain its original name.
mv can also be used to move and rename directories.

% mv [<options>] <source1> [<source2> ...] <target>

Depending on whether the <source(s)> and <target> are files or
directories, different actions are taken. These are described in the table below.
If <target> is a filename, only one <source> file may be specified.

An important option is:

-i If <target> exists, the user is prompted for
confirmation before overwriting.

7.3.5 Reference a file: ln

The ln (link) command allows you to create a link in one directory to a file
in the same or in a different directory, or to create a link to a different directory.
Via links, a file or directory can appear to exist in multiple places, but only
actually exist in one, thus conserving disk space. Links are often used to easily
reference files or directories that would otherwise require a long path name.

The syntax for ln is similar to that for cp and mv, and in fact they are all
run by the same executable.

The most commonly used options for the ln command are:

-i You are prompted before overwriting an existing
filename.

Source Target Result

file new file name Rename file to new name

file existing file name Overwrite existing file with source file contents;
keep existing file name

directory new directory name Rename directory to new name

directory existing directory
name

Move directory such that it becomes a subdirec-
tory of existing directory

one or more files existing directory
name

Move files to existing directory

The UNIX File System 7-13

-s This makes a symbolic, as opposed to an ordinary or
hard, link. A symbolic link can point to a file that is
in a different file system, whereas a hard link cannot.

A symbolic link displays the link and the file to which it is linked when you
run ls -l; this is the only way to know the name that a file is linked to.

Note that when using the AFS file system, hard links can only be made
between files that are in the same directory (the same volume, see section 8.5
AFS Volumes and Quota), so use the -s option even if you’re in the same
directory tree.

The syntax differs slightly for files and directories:

% ln [<options>] </path/to/file_name> </path/to/link_name>

Create the link <link_name> to reference the file
file_name. If <link_name> already exists (as a link
or as a file), it gets overwritten (unless you use option
-i).

% ln -s [<other options>] </path/to/file_name>
</path/to/link_name>

Create symbolic link named <link_name>, that links
to <file_name> which exists in the same or another
directory.

% ln -s [<other options>] </path/to/file_name1>
[</path/to/file_name2> ...] <directory>

Create a symbolic link in <directory> to each of
the listed files. The files may all exist in different
directories since the -s option is used. The link
names will be the same as the filenames they link to. If
files of the same name but in different directories are
specified, only the first file specified of that name will
have a link created.

Let’s look at an example:

% ln -s /e741/run1/e_mu2/mydata r5742

If r5742 is a directory, this creates a link called mydata in the directory
r5742 that points to /e741/run1/e_mu2/mydata. You can now
reference the data file as mydata (i.e., the same filename) as if it were in the
directory r5742.

On the other hand, if r5742 is not an existing directory then it represents the
name of the link being created. In this case, the command establishes a link
called r5742 in the current working directory that points to the file
/e741/run1/e_mu2/mydata. Running the command ls -l should
display the following output:

7-14 The UNIX File System

lrw-r--r-- 1 aheavey g020 46 Aug 29 14:26 r5742
-> /e741/run1/e_mu2/mydata

7.3.6 Remove a File: rm

The rm command (stands for remove) is used to remove the entries of one or
more files.

% rm [<options>] <file>...

Some commonly used options are:

-i Confirmation of removal of write-protected file occurs
interactively, whether the standard input is a terminal or
not. If used with the -r option, you are prompted about
each directory before it is examined.

-r Causes rm to delete the contents of the specified
directory, including all its subdirectories, and the
directory itself (recursive). This option should be used
cautiously.

The file list can include ambiguous file references, so rm should be used
cautiously. You can use the echo utility with the same ambiguous file reference
to see the list generated.

Removal of a file requires write permission to its directory, but neither read nor
write permission to the file itself. If the file has no write permission and the
standard input is a terminal, the set of permissions is printed and you are
prompted for confirmation. If the answer begins with a y, the file is deleted. If
the standard input is not the terminal, the files are deleted without
confirmation.

New users may find it useful to define rmi as the alias for rm -i to use in
place of rm so that prompting always occurs. Section 9.7 The Alias
Command discusses aliases.

7.3.7 Copy to/Restore from Archive or Tape: tar

The tar utility (tape archive) can be used to create, add to, list and retrieve
files from an archive file. Archive files are often stored on tape. The action
taken by the tar command depends on the key, which is essentially a
function option. The key must be specified on the command line as if it were
the first option. It may be followed by function modifiers, and then by options
and/or arguments. The keys and function modifiers must be grouped together
before any arguments are listed. tar does not require, but does allow, a dash
(-) before the list of keys and function modifiers. The keys and functions are:

c create a new tar file

The UNIX File System 7-15

r append specified files to tar file

t list all files in the tar file, or all files in a specified file list

u append new or changed files to tar file

x unwind entire tar file or extract specified files from tar file and
write each file to the directory as specified in the tar file relative to
the current directory

The keys, function modifiers and options are discussed in the man pages. Be
aware that they vary in some cases between UNIX flavors. The command
syntax varies somewhat from key to key, so check the man pages for that
information, too.

Creating a Tar File

When creating a tar file, we have a few recommendations for avoiding
problems:

First, when possible, create the tar file on a machine of the same flavor as the
target flavor. Occasionally a tar file doesn’t unwind properly on a different
platform.

Secondly, choose your working directory carefully. It is often convenient or
desirable to be able to specify simple relative path names for the files to
include in the tar file. For example:

% cd /path/to/dir

% tar cvf /tmp/filename.tar .

creates a tar file with all pathnames relative to /path/to/dir. In general
you should not specify the pathname explicitly on the command line, unless it
will be valid on any other system where the tar file may be unwound and used.

Thirdly, be careful choosing your target directory for the new tar file. Make
sure that the target directory is outside of the directory tree that you’re
including in the tar file. Otherwise the tar file tries to include itself, and can
grow infinitely large.

Unwinding a Tar File

To unwind a tar file, first cd to or create the target directory in which you
want the tar file unwound, then unwind the product tar file:

% cd <target_directory>

% tar xvf <path_to_unwound_tar_file>

7-16 The UNIX File System

7.3.8 Compress or Expand a File: gzip, gunzip

Several utilities are available on UNIX systems for file compression.
compress and pack are native UNIX utilities, and gzip is provided by
FullFUE. We recommend you use gzip for file compression, and its associated
utility gunzip for file expansion. gunzip recognizes and can expand files
compressed with compress and pack as well as gzip.1

The file extensions gunzip recognizes include .gz, -gz, .z, -z, _z,
and .Z. gunzip also recognizes the special extensions .tgz and .taz as
shorthands for .tar.gz and .tar.Z, respectively. When compressing,
gzip uses the .tgz extension if necessary instead of truncating a file with a
.tar extension.

You will need to reference the man pages for details on syntax, options and
usage. In their simplest forms gzip and gunzip can be used as follows,
starting, for example with the original uncompressed file bigfile:

% gzip bigfile

The result is bigfile.gz, whose size is reduced with respect to bigfile
according to Lempel-Ziv coding (LZ77), the same compression scheme used
by compress. Whenever possible, gzip replaces each file by one with the
extension .gz, while keeping the same ownership modes and access and
modification times. gzip will only attempt to compress regular files. In
particular, it will ignore symbolic links. If the compressed file name is too
long for its file system, gzip truncates it.

Compressed files can be restored to their original form using gunzip, or
equivalently by using the -d option with gzip. If the original name saved in
the compressed file is not suitable for its file system, a new name is constructed
from the original one to make it “legal”.

To restore bigfile.gz to its original name and size, enter:

% gunzip bigfile.gz

7.4 Information About Files

This section gives a cursory overview of simple uses for two very powerful
commands for dealing with files: find for searching for files and grep for
searching for strings within files. We also describe wc which displays the
size of a file, od which creates a dump of a file, and file which can
determine file type.

1. Under FullFUE on most systems (namely where gzip and gunzip are not installed in
/usr/local/bin) you will need to run setup gtools in order to access
them.

The UNIX File System 7-17

7.4.1 Find a File: find

The find utility tests each file in the given pathname list to see if it meets
the criteria specified by the expression supplied. It does this by recursively
descending the directory hierarchy for each path name. The format is:

% find <path-name-list> <expression>

<path-name-list> can contain file expansion metacharacters. Each
element in <expression> is a separate boolean criterion. A space
separating two criteria is a logical AND operator, a -o separating the criteria
is a logical OR operator. A criterion can be negated by preceding it with an
exclamation point (!). Criteria are evaluated from left to right unless
parentheses are used to override this. Special characters must be quoted (use
\) and there must be spaces on each side of the special character pair.

Some of the criteria that can be used within <expression> are:

-name <filename> True if <filename> matches the name of the
file being evaluated. Ambiguous file references
can be used if enclosed in quotes.

-type <filetype> True if the type of the file is <filetype>,
where <filetype> is either d (directory)
and f (ordinary file).

-atime <n> True if the file has been accessed in <n> days.

-mtime <n> True if the file has been modified in <n> days.

-newer <filename> True if the file has been modified more recently
than <filename> has.

-print Causes the matching path names to be displayed
on the screen.

-exec <command> \; True if <command> returns a zero exit status.
<command> must be terminated with a quoted
semicolon (note the \). An empty pair of braces
({}) within the command represents the filename
of the file being evaluated.

-ok <command> \; Same as -exec except the generated
command line is displayed and executed only if
the user responds by typing y.

In the previous list, +<n> means more than <n> , -<n> means less than
<n>, <n> means exactly <n> .

Note that find doesn’t do anything with the found files, it doesn’t even
display the names, unless instructed to.

Examples:

7-18 The UNIX File System

• Search the current directory and all subdirectories for the file
lostfile:

% find . -name lostfile -print

• List all files ending in .html in your /wwwork subdirectory:

% find wwwork -name '*.html' -print

• This command will prompt you if you want to execute more on each
file that begins with the letter d in the current directory and all
subdirectories (Enter y if you want the file displayed.):

% find . -name 'd*' -ok more {} \;

• List all files in the current directory that don’t begin with m:

% find . ! -name 'm*' -print

• Find all files in the current directory and all subdirectories that contain the
string hello:

% find . -exec grep -l "hello" {} \;

• Remove all files in your directory tree that are named a.t or have the
extension of .o and haven’t been accessed in a week:

% find ~\(-name a.t -o -name '*.o') -atime +7
-exec rm {} \;

Note that using the find command takes up a lot of system resources.

In particular on AFS systems, you may accidentally end up searching servers
all over the world if the top of the search is at the root directory (/). Generally
you should be careful to only search the part of the UNIX tree that interests
you. Here is an example:

Look for <filename> starting at the root directory (/), and exclude
searches in the /afs and /nfs branches:

% find / \(-name /afs -prune \) -o \(-name /nfs -prune \) -o
-name <filename> -print

7.4.2 Search for a Pattern: grep

The grep utility searches the contents of one or more files for a pattern.

The format is:

% grep [<options>] <pattern> [<file> ...]

Some of the options are:

-c Display only a count of lines that contain the pattern.

-i Ignore upper/lower case distinctions during
comparisons.

The UNIX File System 7-19

-l Display only the name of each file that contains one or
more matches.

The pattern can be a simple string or a regular expression (see section 6.4.5
Regular Expressions). You must quote regular expressions that contain special
characters, spaces, or tabs (this can be done by enclosing the entire expression
within single quotation marks).

Examples:

• Find all non-hidden files in the current directory containing the string
smith:

% grep -i smith *

• Search the file abc for a string beginning with f, followed by 0 or more
r’s, and ending in og (e.g., frog, fog, frrog):

% grep 'fr*og' abc

• Search the file myfile for a line beginning with a T:

% grep '^T' myfile

 or

% less myfile | grep '^T'

• Search /usr/jones/junk for the characters file followed by a
number (e.g., file1, file3):

% grep 'file[0-9]' /usr/jones/junk

• Display a line if Smith is logged in:

% who | grep smith

• Show all processes being run by Smith:

% ps -ef | grep smith

• Show all environmental variables containing <string> in their name
or their translation:

% env | grep <string>

• Show all aliases containing <string> in their name or their
translation:

% alias | grep <string>

7.4.3 Count a File: wc

The wc command, which stands for word count, counts the number of lines,
words, and characters there are in the named files, or in the standard input if
the argument is absent. If there is more than one file, wc totals the count as
well.

% wc [-lwc] [<names>]

7-20 The UNIX File System

The options l, w, and c may be used in any combination to specify that a
subset of lines, words, and characters be reported. The default is -lwc.

UNIX users frequently count things by piping them into wc. For example, to
display the number of users logged into the system, you can execute:

% who | wc -l

7.4.4 Dump a File: od

The od (octal dump) command can be used to examine the contents of a
file in various formats: octal, decimal, hexadecimal, and ASCII. The default is
octal.

The format is:

% od [<options>] [<file>] [<offset>] [|less]

If <file> is not included, standard input is assumed. The options are:

-c Produces a character dump.

-d Produces a decimal dump.

-o Produces an octal dump.

-x Produces a hexadecimal dump.

The -c option prints non-printable characters as a printable character
preceded by a backslash: \0 is null, \b is backspace, \f is form-feed,
\n is new-line, \r is return, and \t is tab.

The <offset> specifies where in the file the dump is to begin, if different
than the beginning of the file. It is of the form [+]<n>[.][b]. The + is
only necessary if you have no file specified so that the command interpreter
knows this is the offset not the file. Without . or b, <n> indicates the
dump starts at (octal) byte <n> of the file. A . displays <n> in decimal,
a b in 512-byte blocks.

We recommend that you always pipe the output of od to less (or more)
so that you can manipulate it. Large files can be unwieldy, and you may not be
able to stop the output once it’s going!

7.4.5 Determine File Type: file

The file utility can be used to determine the file type of a file according to its
contents. It bases its guesses on a list of “magic numbers” recorded in a
“magic file”, /etc/magic. Some of the file types are:

• ASCII text

• C program text

• directory

The UNIX File System 7-21

• executable

file determines the filetype by looking at the beginning of the file and
comparing it to entries in the magic file. The command format is:

% file <filename>...

7.5 Manipulating Directories

This section describes the commands you can use to organize and use the
UNIX directory structure. It describes how to make and remove directories,
and move from one directory to another. Listing the contents of a directory
(files and subdirectories) was described in a previous section. Section 7.6.2
Directory Permissions explains the meaning of access permissions as applied
to directories.

7.5.1 Print Working Directory: pwd

The pwd command (for print working directory) displays the path name of
your working (current) directory. The command format is:

% pwd

7.5.2 List Directory Contents: ls

The ls command, which stands for list, is used to list the contents of a
directory. ls has many options, some of which are system-dependent. A
few of them are described in section 7.3.1 List Directory Contents: ls. For a
complete description of the command, refer to the man pages for ls.

7.5.3 Change Directory: cd

When you first log in to the system, you are placed in your home directory,
which is then also your current working directory. You can use the cd
command (for change directory) to change your current working directory.
The command format is:

% cd [<directory>]

You can specify a complete path or a relative path. You can use .. (for the
parent directory) in your pathname. You must have execute permission (which
provides search permission in this case) on a directory to cd to it.

If <directory> is not specified, you are returned to your home directory.

7-22 The UNIX File System

The following examples illustrate moving to different directories:

• your home directory

% cd

• a subdirectory called Tools

% cd Tools

• a colleague’s home directory (using absolute pathname)

% cd /usr/jones

• a colleague’s subdirectory (using tilde)

% cd ~jones/ourfiles

• a parallel directory (has same parent directory as current directory)

% cd ../Tools

7.5.4 Make a Directory: mkdir

The mkdir command (for make directory) is used to create a directory.
The command format is:

% mkdir <dirname> ...

If a pathname is not specified, the directory is created as a subdirectory of the
current working directory. Directory creation requires write access to the
parent directory. The owner ID and group ID of the new directory are set to
those of the creating process.

Examples:

• create a subdirectory in the current working directory

% mkdir progs

• create one with a full pathname (the directory Tools must already
exist)

% mkdir /usr/nicholls/Tools/Less

7.5.5 Copy a Directory

The most straightforward way of copying a directory and its contents is to pipe
the output of the ls command (see section 7.3.1 List Directory Contents: ls)
into the file copy facility cpio (see the man pages). However this technique
does not copy subdirectories.

First, create the destination directory using mkdir (see section 7.5.4 Make a
Directory: mkdir), if it doesn’t already exist. Secondly, from the source
directory, run the command (shown with recommended options; see man pages
for option information):

The UNIX File System 7-23

% ls | cpio -dumpV <destination_dir>

The <destination_dir> must be specified relative to the source
directory.

If you need to copy a directory structure, then use the tar utility instead. It is
described in section 7.3.7 Copy to/Restore from Archive or Tape: tar. The
following sequence of commands (shown on a single line) copies a structure
from the source directory to the destination directory. The
<destination_dir> is taken as relative to the <source_dir>:

% cd <source_dir>; tar cf - . | (cd <destination_dir>; tar xfBp
-)

The “-” is used for the name of the tar file (argument to the f option) so that
tar writes to the standard output or reads from the standard input, as
appropriate.

7.5.6 Move (Rename) a Directory: mv or mvdir

See section 7.3.4 Move or Rename a File: mv for information on mv. To
move a directory (<olddirname>) and its contents to a different position in
the directory tree, use the command format:

% mvdir <olddirname> <newdirpath>

If <newdirpath> exists already, then the directory gets moved to
<newdirpath>/<olddirname>. Note that the two arguments cannot be
in the same path. For example:

% mvdir x/y x/z

is ok, but

% mvdir x/y x/y/z

is not ok.

7.5.7 Remove a Directory: rmdir

You can remove a directory with the rmdir command. The directory must
contain no files or subdirectories, and you must have write permission to the
parent directory.

% rmdir <dirname> ...

You can use an absolute or relative pathname.

You can also use rm -r as described in Section 7.3.6 Remove a File: rm.
rm -r will delete a directory, all subdirectories, and all files. This command
should be used with extreme caution.

7-24 The UNIX File System

For example, the following command deletes the directory temp, all
subdirectories of temp and all files contained in those directories, prompting
before each removal, and confirming removal of write-protected files (-i):

% rm -ir /usr/jones/temp

7.6 File and Directory Permissions

7.6.1 File Access Permissions

The UNIX file system allows you to control read, write, and execute access to
your files on the basis of user (owner), group, and other (everyone else).1 In
this section we will consider only the standard UNIX file permissions.

Note that in the AFS file system, file permissions are mediated by Access
Control Lists (ACLs) that are set on a directory level. The standard UNIX
file permissions don’t apply in this case except for the owner permissions,
which apply to all users. AFS file permissions are treated in section 8.6
File and Directory Permissions.

To determine the current permissions, use the long form of the ls command,
ls -l. Referring to the example below, the nine characters immediately
following the first field represent the one-bit flags known as the mode bits that
control file access. A dash indicates a bit is not set, r stands for read

1. Note o is for other and not for owner as on VMS.

The UNIX File System 7-25

access, w for write access, and x for execution access. The first set of three
characters refer to owner permission, the middle three for group permission,
and the last three for all other user classes.

In the example, ignoring the directory files (which have a d in position 1), the
owner has rw access to the files, whereas group and others have read (r)
access only.

chmod

The chmod command, which stands for change mode, is used to change
access permissions of a file or directory:

% chmod <mode> <filename> ...

or

% chmod <mode> <directory> ...

In the absolute form of the mode where the level of protection is specified in
octal format, <mode> looks like 741 or 554, for example, where each of the
three octal numbers represents the sum of the permissions granted to its class:
user, group, and other, in that order. The three types of permission have the
values:

read 4 (100 octal)

write 2 (010 octal)

execute 1 (001 octal)

For example, a mode of 741 means owner can read, write, and execute
(4+2+1=7); group can read (4+0+0=4); and others can execute the file
(0+0+1=1).

total 251

drwxr-xr-x 3 nicholls g020c 512 May 2 08:53
Tools

drwxr-xr-x 2 nicholls g020c 512 May 2 09:01
bin

-rw-r--r-- 1 nicholls g020c 446 May 4 14:09
defaults

-rw-r--r-- 1 nicholls g020c 95418 May 1 17:42
intro.lpr

-rw-r--r-- 1 nicholls g020c 0 May 10 17:51
lsout

-rw-r--r-- 1 nicholls g020c 6683 May 1 16:46
man.lpr

-rw-r--r-- 1 nicholls g020c 12258 May 9 16:16 out

7-26 The UNIX File System

To give this permission to a file test, you would enter:

% chmod 741 test

You can use an alternate form of <mode> in the chmod command in which
<mode> is a three-character field specifying an action to be taken. The action
is to add or subtract one or more permissions from one or more user classes. It
takes the form:

<who> <operator> <permission(s)>

These three positions within the field take the following characters:

<who> represents the user class or classes; it takes any
combination of u, g, o, and a for user (user is really
the owner), group, other and all, respectively, where all
includes the three individual classes

<operator> + or - for adding or subtracting permissions, or = for
setting a specific permission and resetting all other
permissions for the specified user class(es)

<permission(s)>any combination of r, w, and x for read, write, and
execute, indicating the permissions to be permitted,
denied, or reset.

Examples of the chmod command:

• Remove group execute permission to the file progs:

% chmod g-x progs

• For the files out and out1, add group read and write, and deny write
to other:

% chmod g+rw,o-w out out1

• Set group read permission and reset all other group permissions to
myfile:

% chmod g=r myfile

Note that classes of users or levels of protection not specified in a command
are not modified in this form of the command (with the exception that =
resets other permissions).

umask

With the umask command you can specify a mask that the system uses to set
access permissions when a file is created. In order to understand umask you
need to know that access permission at file creation is application-dependent.

The UNIX File System 7-27

Each command or application sets a file permission in its open command.1
The system then “subtracts” any user-defined mask, resulting in the final
access permission for the file. You can set a umask by this command:

% umask [<ooo>]

where <ooo> stands for three octal digits. The user-specified “mask”,
<ooo>, has the same positional structure as described above for chmod, but
specifies permissions that should be removed (disallowed).

For example, a mask of 022 removes no permissions from owner, and removes
write permission from group and others. Thus a file normally created with 777
would become 755 (this would appear as rwxr-xr-x in the format put out
by the command ls -l). The following command could be put in your
.cshrc or .profile.

% umask 022

The meaning of permissions applied to directories is described in Section 7.6.2
Directory Permissions.

7.6.2 Directory Permissions

 See section 8.6.2 Directory Permissions via Access Control Lists (ACLs) for
AFS systems.

You can grant or deny permission for directories as well as files, and protection
assigned to a directory file takes precedence over the permissions of individual
files in the directory.

• Read permission for a directory allows you to read the names of the files
contained in that directory with the ls command, but not to use them.

• Write permission for a directory allows you to create files in that directory
or to delete any file in the directory, regardless of the file protection on the
files themselves. It does not allow you to see the files or use them without
r and x directory permission. In other words, write permission to a
directory allows you to alter the contents of the directory itself, but not to
alter, except to remove, files in the directory (which is controlled by the
file’s permissions).

• Execute permission allows you to list the contents of the directory.

File access permissions of directory files are changed with the chmod
command (see section 7.6.1 File Access Permissions).

1. Normally only the loader creates files with execute permission.

7-28 The UNIX File System

7.7 Temporary Directories

By convention, there are directories named /tmp (and sometimes
/usr/tmp) where programs and users can store temporary files. Many
programs (e.g., compilers) write temporary files there or in the area specified
by the environment variable TMPDIR. Since these are public areas, it is
necessary to manage this space, which means that you cannot count on files
being retained in these directories.

Many systems on site have fairly small /tmp areas and therefore you must
be careful not to fill up this space. In general, you should only use /tmp for
very temporary, small files. On many systems files in /tmp will disappear
after a reboot or after existing for a week. You can set TMPDIR to a different
location if there is not enough space in these areas.

Contact the administrators of the particular system to find out what the current
policy is on the machine.

