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Computer Science and Information Theory
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The first solid-state transistor
(Bardeen, Brattain & Shockley, 1947)



Quantum Mechanics and Computjng
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“There's Plenty of Room at the Bottom” (1959)

“When we get to the very, very small world — say circuits of seven
atoms — we have a lot of new things that would happen that
represent completely new opportunities for design.

Atoms on a small scale behave like nothing on a large scale,
Richard Feynman  for they satisfy the laws of quantum mechanics...”




Application 1. Quantum Factoring P Shor (1994)

A quantum computer can factor numbers
exponentially faster than classical computers

15 =3 x5 (...easy)
38647884621009387621432325631 =? x ?

Application 2: Quantum Search

Importance: cryptanalysis

public key cryptography relies on
inability to factor large numbers

A guantum computer can finding a marked
entry in an unsorted database quadratically
faster than classical computers

(e.g., given a phone number, finding the
owner’s name in a phonebook)

L. Grover (1997)

Importance: “satisfiability” problems

fast searching of big data

inverting complex functions
determining the median or other
global properties of data

pattern recognition; machine vision




Application 3: Quantum Simulation

Quantum modelling is hard: N quantum systems require ., 0¥
. ih— = HY
solution to 2N coupled egns ot

Alternative approach: Implement model of interacting system on a quantum
simulator, or “standard” set of qubits with programmable interactions
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Energy and Light Harvesting Use quantum simulator to
program QCD lattice gauge theories, test ideas connecting
cosmology to information theory (AdS-CFT etc..)

Quantum Field Theories Program QCD lattice gauge theories, test ideas connecting
cosmology to information theory (AdS-CFT etc..)



Application 4: Quantum Optimization

Minimizing complex (nonlinear) functions by

“simultaneously sampling” entire space
through quantum superposition

Relevant to

* Logistics

e Operations Research
e VLSI design

* Finance

Example: quadratic optimization

Minimize f(x,x, ..) = Z qijXiXj + z CiXi
i

i<j

this function maps to energy qf ,.
guantum magnetic network (

global minimum
of f(Xy,X,)

Killer Application?

could crack a large class of intractable
problems: factoring, “traveling salesman”
problem, etc..

BUT not known if there is always a
guantum speedup




Application 5: Quantum Networks
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Uses of a quantum network
e Secret key generation: cryptography
e Certifiable random number generation
e Quantum repeaters (“amplifiers”)
e Distributed quantum entanglement for optimal decision making
e Large-scale quantum computing



Implementation of Quantum Hardware

e quantum materials by design
e complex optimization

control & . \‘ * “big quantum data”
configurability % \ ® quantum computing
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Leading Quantum Computer Hardware Candidates

Trapped Atomic lons FEATURES & STATE-OF-ART ~ CHALLENGES

very long (>>1 sec) memory ¢ lasers & optics

e lasers e 5-20 qubits demonstrated * high vacuum
atoms. _ » atomic qubits all identical * 4K cryogenics
PR #***W Tt e connections reconfigurable ¢ engineering needed

IARPA Lockheed

Investments: DoD Honeywell

Atomic qubits connected through , ,
Sandia UK Gov't

laser forces on motion or photons

Superconducting Circuits FEATURES & STATE-OF-ART  CHALLENGES

x o * connected with wires short (10® sec) memory
- \""’ww .
\\; ﬂ i e fast gates 0.05K cryogenics

5-10 qubits demonstrated all qubits different
printable circuits and VLSI not reconfigurable

IARPA Lincoln Labs
Superconducting qubit: LARGE DoD Intel/Delft
right or left current Investments: Google/UCSB  IBM

* NV-Diamond and other solid state “atoms”
Others: still exploratory  « Atoms in optical lattices

e Semiconductor gated quantum dots
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1947: first transistor 2000: integrated circuit

M/2 beam splitters
CCD Camera

N x M optical
N ion trap modules crossconnect switch

2015: qubit collection Large scale qguantum network?
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