# Example application for rational approximations 

Mohan Krishnamoorthy, Sven Leyffer, Holger Schulz

Scidac weekly meeting, Fermilab, March 21, 2019


## Motivation

Typical problem in HEP: parameter scan of a physics model in multiple dimensions and comparison with data.

- data is in histogram, physics prediction also as histogram
- different predictions for different physics parameters, $p$
- What points in the parameter space give predictions that are in statistical agreement with data?



## Likelihood

A good measure to test compatibility with data and prediction is a likelihood such as

$$
\mathcal{L}(p)=\prod_{b} \frac{N_{b}(p) \cdot \lambda_{b} \cdot e^{N_{b}(p)}}{\lambda_{b}!}
$$

where

- $b$ runs over all bins of the histogram
- $\lambda_{b}$ denotes the value of bin $b$ in the data histogram
- $N_{b}(p)$ denotes the value of bin $b$ in the physics prediction histogram, evaluated at the physics point $p$

We now need to numerically find the point $\hat{p}$ which maximises the likelihood function. That would be the best fit point.

## Likelihood-scan

Usually, we are not just interested in the point $\hat{p}$ but in confidence regions, especially in the case of degeneracies

- typically $1 \sigma$ and $2 \sigma$ contours
- Those are regions in the parameter space that are also statistically compatible with the measured data

Scanning the parameter space can get expensive as the predictions $N_{b}(p)$ can come from arbitrarily complex simulations.

- In the following: 3D parameter scan performed with MultiNest in MPI mode.


## Our example

We simulate dark matter signals in a Xenon detector. There are 3 parameters:

- $m_{\chi}$ the mass of the dark matter candidate
- $c_{\pi}$ and $c_{+}$are coupling strengths

For the approximations:

- we evaluate the simulation at 500 randomly sampled points, $P$, yielding 500 sets of $N_{b}(p)$
- we fit separate approximations $a_{b}(p)$ for each bin $b$ using the $N_{b}(p) \forall p \in P$


## Comparison

Since the likelihood is a 3D function, visualisation is best done as projections onto 1 or 2 dimension. We use a measure called profile-likelihood to do that. The point of maximum likelihood will be displayed as a star.

In the following plots, we compare results obtained using the true simulation with those obtained using different approximations.

Reminder: this is for the true simulation

$$
\mathcal{L}(p)=\prod_{b} \frac{N_{b}(p) \cdot \lambda_{b} \cdot e^{N_{b}(p)}}{\lambda_{b}!}
$$

This is the likelihood when using approximations $a_{b}(p)$

$$
\mathcal{L}(p)=\prod_{b} \frac{a_{b}(p) \cdot \lambda_{b} \cdot e^{a_{b}(p)}}{\lambda_{b}!}
$$

There are always three approximations in the following plots, a pole-free rational approximation, a polynomial approximation and a rational approximation with poles.

## 1D Profile likelihoods

| true simulation | pole-free rational |
| :---: | :---: |
| polynomial | rational with poles |




## 1D Profile likelihoods

| true simulation | pole-free rational |
| :---: | :---: |
| polynomial | rational with poles |



## 1D Profile likelihoods

| true simulation | pole-free rational |
| :---: | :---: |
| polynomial | rational with poles |






## 2D Profile likelihoods

| true simulation | pole-free rational |
| :---: | :---: |
| polynomial | rational with poles |






## 2D Profile likelihoods

| true simulation | pole-free rational |
| :---: | :---: |
| polynomial | rational with poles |





## 2D Profile likelihoods

| true simulation | pole-free rational |
| :---: | :---: |
| polynomial | rational with poles |






## Remarks

The likelihood scan takes about an hour for the true simulation on my laptop (the simulation is quite simple in this case).

With approximations, it takes less than 2 minutes.
The number of likelihood evaluations in each scan is approximately the same (20k).

We find that the pole-free rational approximations do a very good job.
Rational approximations with poles, unsurprisingly, are a less than optimal choice.

We see the breakdown of the polynomial approximation quite vividly.

