Chapter 9: Programmer’s Guide to the Process

Logger

This chapter describes the Process Logger and provides some guidance for
programmers wishing to configure their external programs to create CRL
entries.

9.1 Introduction

The Process Logger (Plog) provides a way to create and store CRL entries
from programs external to CRL. This is particularly useful for programs that
monitor alarms or devices on the experiment. Plog entries are stored and
viewed in the same way as entries inserted from within the CRL application.

Plog is run as a standalone daemon process that monitors specified TCP ports
for input, interprets the input as CRL entries, and creates and logs the entries.
Information on starting the Plog daemon is provided in section 11.8 Starting
the Process Logger Daemon.

There can be multiple back-to-back messages on a single open TCP connection
and many concurrent TCP connections on any TCP port. Each experiment
must assign and make known the TCP port number(s) for remote program
connections.

9.2 Guidelines for Programmers

The Process Logger communication is full duplex. Your program needs to
send messages (the entries) to Plog and to read return messages from it. You
must write your CRL entries to one of the TCP ports (sockets) on the Plog
host, as assigned by your CRL administrator.

Input for an entry must be furnished in the form of an XML message that
identifies the entry’s various header elements and body, as shown in section
9.2.1 Entry Message Format. The header elements include operator name,
category, topic, and keyword(s), all of which are optional but recommended.
These element types are described in Chapter 1: Overview. Currently, there is

Programmer’s Guide to the Process Logger 9-1

no validation of the values of these elements against values already defined for
a particular CRL installation, so you can choose unique text strings for these
items, or not. We recommend that you use an operator defined in the CRL
database, and a category/topic defined in the XML configuration file. If you
choose an arbitrary text string, the search pulldown lists for operator and
categories will not contain your text. All is not lost when you use your own text
string, you can always type these fields in manually on the search page if you
choose to do so.

Currently, only text or plaintext messages may be included in Plog entries; no
binary data is acceptedl. Text and plaintext are compared and contrasted in
section 3.3.1 Text.

9.2.1 Entry Message Format

The format of the messages Plog receives from your program must be as
shown below.

Notes:

» Use upper case for the element tags.2

* The MESSAGE TYPE (first line) must be set to TEXT or
PLAI NTEXT.

* The element tags <MESSAGE>. .. </ MESSAGE> and
<TEXT>. . . </ TEXT> are required; all other element tags are optional.

* The logged text within <TEXT>. .. </ TEXT> must either be
contained withina <! [CDATA[. . .]] > construction or it must
conform to valid XML standards (e.g., <P> must be used as <P/ >,

 must be <BR/ >, and so on, and all tags with attributes must have
the attribute value enclosed in double quotes, e.g., <FONT

Si ze="10">. .. </ FONT>).

* The logged text within <TEXT><![CDATA[...]]></ TEXT> can
contain’:

- newlines
- carriage returns

- HTML tags (If the message type is plaintext, your browser should
treat HTML tags properly, but CRL will treat the tags as text.)

1. In the future, binary data could be added by using base64 encoding and creating an
XML tag for the encoded data.

2. <MESSAGE> and </MESSAGE> are the only element tags that are required to be
upper case.

3. The CDATA construction is not strictly necessary, however it ensures that the text will
be interpreted as a character string and will not be parsed.

9-2 Programmer’s Guide to the Process Logger

* To attach an image, insert this tag into the CDATA section:
<I MAGCE_I NSERT http://ww nmyURL /myPicture. gif>.
This is the same tag as the CRLW uses to insert images. The entry data is
parsed and when it comes across this tag, the image is copied from the
URL into a local file. This image is then attached to the the entry.

* You can insert multiple images and put them anywhere in the text.

<TEXT>
<! [CDATA[
This is the first inmage:
<I MAGE I NSERT http://nyURL/ nyPic. gif>

This is the second inmage:
<I MAGE_I NSERT http://nyURL/ myCQt herPic.gif>
11>
</ TEXT>
To attach images, the entry has to be of type text, it will not work with
plaintext.

Format

<MESSACE TYPE="pl ai ntext">
<OPERATOR>Nane of program or responsible person
</ OPERATOR>
<CATEGORY>Cat egor y/ subcat egory/ sub- subcat egory/. ..
</ CATEGORY>
<TOPI CTopi ¢
</ TOPI C
<KEYWORD>Keywor d1
</ KEYWORD>
<KEYWORD>Keywor d2
</ KEYWORD>
<TEXT><![CDATA] The | ogged text goes here.

This is an inage:
<I MAGE_I NSERT http://myURL/ nyPic.gif>
11>
</ TEXT>
</ MESSAGE>

9.2.2 Return Messages from Plog

Every time Plog receives an entry, it returns a message to the sending program.
The return message is one of the following three:

<SUCCESS/ > successful entry

Programmer’s Guide to the Process Logger 9-3

<FAI L/ > entry not saved, but no syntax error detected; may
succeed if tried in future (e.g., occurs if database
application is not currently running or filesystem not
available)

<ERRCR/ > message had a syntax error and will never result in a
saved entry

9.2.3 Sample Java Program Excerpt

You should configure your program to run input and output threads, as
illustrated in this annotated Java test program excerpt (text enclosed in
brackets, e.g., <t ext >, indicates replacement by context-sensitive data):

package processlogger;

inport java.io.l|nputStreanReader;
inmport java.net. Socket;
inmport java.io.PrintWiter;

public class ClientTester extends Thread {
static | nputStreanmReader isr = null;

/1 a message with three inmages:
static String MESSAGE=
" <MESSAGE TYPE=\"text\">"+
" <OPERATOR>aut onmat at or </ OPERATOR>" +
" <CATEGORY>CFT/ CFT</ CATEGORY>" +
" <TOPI C>AUTO</ TOPI G +
" <KEYWORD>r oot macr o</ KEYWORD>" +
" <KEYWORD>aut omat i ¢ ent ry</ KEYWORD>" +
" <TEXT>"+
"<I[CDATA[test: "+
"<| MAGE_I NSERT htt p://myURL/ COVP2. gi f>"+
" this is the second i mage: " +
"<|I MAGE_I NSERT http://nmyURL/ COWPL. gi f>" +
" this is the third i mage: "+
"<| MAGE_| NSERT htt p://myURL/ DFEB. gi f >" +
"

 this some nore text

"+
"11>"+
"</ TEXT>" +
" </ MESSAGE>";

public ClientTester() {

}

public static void nmain(String[] args) {
int i =0;
Systemout.println("ClientTester for process |ogger starting:");
try {

Socket s = new Socket ("yourhost", 52278);
PrintWiter pw = new PrintWiter(s.getQutputStreanm(),true);
isr = new | nput St reanReader (s.getlnputStrean());
new CientTester().start();
pw. wr i t e(MESSAGE) ;
System out. println("Mssage sent: " + MESSACE);
pw. flush();
Thr ead. sl eep(100);

9-4

Programmer’s Guide to the Process Logger

} catch (Exception e) {
System out. println("Exception "+e);

}
Systemexit(0);

public void run() {
char[] cbuffer = new char[20];
String result;
while(true) {
try {
int count = isr.read(cbuffer);
result = new String(cbuffer, 0, count);

Systemout.print("\tSent nessage, response: " +result);

if (!result.equal s(Connection. SUCCESS))fail ures++;

} catch(Exception e) {
failures++;

Programmer’s Guide to the Process Logger

9-6

Programmer’s Guide to the Process Logger

